from catboost import CatBoostClassifier from sklearn.multiclass import OneVsRestClassifier from sklearn.preprocessing import MultiLabelBinarizer ##Using your example data X = [[1, 2, 3, 4], [2, 3, 5, 1], [4, 5, 1, 3]] y = [[3, 1], [2, 8], [7, 8]] mlb = MultiLabelBinarizer() mlb.fit(y) y_k_hot = mlb.transform(y) ovr = OneVsRestClassifier(estimator=CatBoostClassifier(iterations=10,random_state=1)) ovr.fit(X,y_k_hot) ovr.predict(X)*mlb.classes_ array([[1, 0, 3, 0, 0], [0, 2, 0, 0, 8], [0, 0, 0, 7, 8]])