import transformers from transformers import BertModel, BertTokenizer import torch import copy import pandas as pd import numpy as np import seaborn as sns from pylab import rcParams import matplotlib.pyplot as plt from matplotlib import rc from tqdm import tqdm from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix, classification_report from collections import defaultdict from textwrap import wrap from torch import nn, optim from torch.utils import data %matplotlib inline %config InlineBackend.figure_format='retina' sns.set(style='whitegrid', palette='muted', font_scale=1.2) HAPPY_COLORS_PALETTE = ["#01BEFE", "#FFDD00", "#FF7D00", "#FF006D", "#ADFF02", "#8F00FF"] sns.set_palette(sns.color_palette(HAPPY_COLORS_PALETTE)) rcParams['figure.figsize'] = 6, 4 RANDOM_SEED = 42 np.random.seed(RANDOM_SEED) torch.manual_seed(RANDOM_SEED)