def standardize(df, features): df_standardized = df.copy() for f in features: mu = df[f].mean() sigma = df[f].std() df_standardized[f] = df[f].map(lambda x: (x - mu) / sigma) return df_standardized features = ['delay_to_carrier', 'wait_time', 'n_orders', 'quantity','quantity_per_order', 'sales'] sellers_standardized = standardize(sellers, features) model = smf.ols(formula=f"review_score ~ {'+ '.join(features)}", data=sellers_standardized).fit()