!pip install rasterstats !pip install rasterio !pip install leafmap import glob import pandas as pd import rasterio from rasterio.mask import mask import geopandas as gps from rasterstats import zonal_stats from google.colab import drive drive.mount('/content/drive') files = glob.glob(f"/content/drive/MyDrive/Sura/Datos TMax/2011_15/SAMeT_CPTEC_TMAX_2013*.nc") print(len(files)) grid_str = '/content/drive/MyDrive/Sura/Seccionales_Policiales_WGS84_Selected.shp' poligonos = gps.read_file(grid_str) df = pd.DataFrame([], columns=['fecha', 'median', 'CODIGOSECC']) for file in files: with rasterio.open('netcdf:'+ file + ':tmax') as msla_nc: msla_nc_data = msla_nc.read(1) affine= msla_nc.transform print(file) for index, row in poligonos.iterrows(): features = row.geometry zs = zonal_stats(features, msla_nc_data,affine=affine,all_touched= False, stats="median") df = df.append(pd.DataFrame([[zs[0].get('median'), str(file)[-11:-3],row['CODIGOSECC']]], columns=['median', 'fecha','CODIGOSECC'])) print(row['CODIGOSECC']) df.to_csv('/content/drive/MyDrive/Sura/Tmax2013.csv',header=True, index=False) import glob import pandas as pd df = pd.DataFrame([], columns=['fecha', 'median', 'CODIGOSECC']) files = glob.glob(f"/content/drive/MyDrive/Sura/Datos TMax/Tmax2*.csv") print(len(files)) for file in files: df = df.append(pd.read_csv(file)) #print(df) df['fecha'] = df['fecha'].astype(str) df['year'] = df.fecha.str[:4] df['month'] = df.fecha.str[4:6] df['day'] = df.fecha.str[-2:] #display(df.groupby('year').count()) df.to_csv('/content/drive/MyDrive/Sura/TmaxCompleto.csv',header=True, index=False)