# --------------------------- Chrome --------------------------------- from selenium import webdriver from selenium.webdriver.chrome.service import Service from selenium.webdriver.support.ui import Select from selenium.webdriver.common.by import By import pandas as pd import time path = r"C:\Drivers\chromedriver-win64\chromedriver.exe" website = "https://www.adamchoi.co.uk/overs/detailed" # Use the Service class to specify the path to chromedriver.exe service = Service(executable_path=path) # Use ChromeOptions for additional configurations options = webdriver.ChromeOptions() options.add_experimental_option("detach", True) # Initialize the WebDriver with the specified service and options driver = webdriver.Chrome(service=service, options=options) # Navigate to the specified website driver.get(website) all_matches_button = driver.find_element("xpath", '//label[@analytics-event="All matches"]') all_matches_button.click() dropdown = Select(driver.find_element(By.ID, "country")) dropdown.select_by_visible_text('Spain') time.sleep(3) matches = driver.find_elements(By.TAG_NAME, "tr") date = [] home_team = [] score = [] away_team = [] for match in matches: date.append(match.find_element("xpath", "./td[1]").text) home_team.append(match.find_element("xpath", "./td[2]").text) score.append(match.find_element("xpath", "./td[3]").text) away_team.append(match.find_element("xpath", "./td[4]").text) # Close the WebDriver when you're done driver.quit() df = pd.DataFrame({'date': date, 'home_team': home_team, 'score': score, 'away_team': away_team}) df.to_csv('football_data.csv', index=False) print(df)