import xarray as xr import pandas as pd import xwrf from pyproj import Transformer, CRS import matplotlib.pyplot as plt import cartopy.crs as ccrs import proplot as pplt import numpy as np from scipy.stats import pearsonr import xskillscore as xs from sklearn.metrics import mean_squared_error import math from datetime import datetime import proplot as pplt from dask.distributed import Client, LocalCluster cluster = LocalCluster() client = Client(cluster) import warnings warnings.filterwarnings("ignore") client from datetime import datetime, timedelta wrfData=xr.open_dataset('/blue/dhingmire/ROMS_Input/ERA5/1992/d2/wrfout_d02_1993-01-02_00:00:00') fig,axes = pplt.subplots(nrows=6,ncols=4,proj='cyl') axes.format(lonlim=(-160,-100), latlim=(65,30), labels=True, coast=True ) lons=wrfData.SWDOWN[16,:,:].XLONG lats=wrfData.SWDOWN[16,:,:].XLAT #inData.T2[0,:,:].plot() for i in range(0,24): #print(i) con=axes[i].contourf(lons,lats,wrfData.SWDOWN[i,:,:], extend='both',cmap = 'terrain_r',levels=np.arange(0,600,50)) axes[i].set_title(wrfData.SWDOWN[i,:,:].XTIME.values) #axes[i].colorbar(con) #con = axes[0,0].contourf(inData.T2[0,:,:], # extend='both',cmap = 'coolwarm',levels=np.arange(268,294,2)) fig.colorbar(con) #bar = fig.colorbar(con, loc='b', label='Surface pressure (Pa)') fig.format(coast=True,suptitle=wrfData.SWDOWN[16,:,:].description)#,toplabels=['WRF Output','ERA5'])