# Showcasing the data for cluster 0 cluster_0_df = df_trimmed[df_trimmed['ClustersK'] == 0] variable_names = [col for col in cluster_0_df.columns if col != 'ClustersK'] colors = ['#2e2237'] n_variables = len(variable_names) n_rows = (n_variables - 1) // 5 + 1 fig, axes = plt.subplots(n_rows, 5, figsize=(15, 3 * n_rows), squeeze=False) for i, variable in enumerate(variable_names): row = i // 5 col = i % 5 ax = axes[row, col] cluster_0_df[variable].plot.hist(ax=ax, bins=20, color=colors) ax.set_title(f'Distribution of {variable}') ax.set_xlabel(variable) ax.set_ylabel('Frequency') for i in range(n_variables, n_rows * 5): fig.delaxes(axes.flatten()[i]) plt.tight_layout() plt.show()