from sklearn.preprocessing import MinMaxScaler scaler=MinMaxScaler() columns_to_scale=['Age','Salary','Experience','Dependents','Rating'] df[columns_to_scale]=scaler.fit_transform(df[columns_to_scale]) df.head() ******************************* from sklearn.preprocessing import LabelEncoder,OneHotEncoder from sklearn.compose import ColumnTransformer l=LabelEncoder() df['Purchased']=l.fit_transform(df['Purchased']) ed_mapping={'Bachelor':1,'Master':2,'PhD':3} df['Education']=df['Education'].map(ed_mapping) df=pd.get_dummies(df,columns=['City','Product_Category'],drop_first=True) df.head() ******************************** from sklearn.decomposition import PCA pca=PCA(n_components=2) pca_f=pca.fit_transform(df[columns_to_scale]) pca_df=pd.DataFrame(pca_f,columns=['PCA1','PCA2']) df=pd.concat([df,pca_df],axis=1) df.head() *********************** df.drop('Name',axis=1,inplace=True) df.head() *************************** import seaborn as sns import matplotlib.pyplot as plt corr_mat=df.corr() plt.figure(figsize=(10,8)) sns.heatmap(corr_mat,annot=True,cmap="coolwarm") plt.title("Correlation Matrix") plt.show() ********************************** df.hist(bins=20,figsize=(20,15)) plt.show() skewness=df.skew() print(skewness) ********************** # prompt: plt.figure(figsize=(15,10)) plt.figure(figsize=(15,10)) sns.boxplot(data=df[['Age','Salary','Experience','Dependents','Rating']]) plt.title("Box Plots for Numerical Features") plt.show() *********************************