import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import MinMaxScaler,StandardScaler,OneHotEncoder from sklearn.preprocessing import LabelEncoder from sklearn.pipeline import Pipeline from sklearn.compose import ColumnTransformer from sklearn.impute import SimpleImputer #Set Seed for reproducability np.random.seed(42) #Create synthetic dataset data={ 'Age':np.random.randint(29,77,size=200), 'Sex':np.random.choice(['Male','Female'],size=200), 'ChestPainType':np.random.choice(['ATA','NAP','ASY','TA'],size=200), 'RestingBP':np.random.randint(94,200,size=200), 'Cholesterol':np.random.randint(126,564,size=200), 'FastingBS':np.random.choice([0,1],size=200), 'RestingECG':np.random.choice(['Normal','ST','LVH'],size=200), 'MaxHR':np.random.randint(71,202,size=200), 'ExerciseAngina':np.random.choice(['N','Y'],size=200), 'Oldpeak':np.random.uniform(0,6.2,size=200), 'ST_Slope':np.random.choice(['Up','Flat','Down'],size=200), 'HeartAttack':np.random.choice([0,1],size=200) } #Convert to DataFrame df=pd.DataFrame(data) df.head()