import pandas as pd # Load the dataset df = pd.read_csv('Pune_rent.csv') # Display the first few rows and basic information print(df.head()) print(df.describe()) print(df.info()) # Check for missing values print(df.isnull().sum()) # Convert categorical variables to dummy/indicator variables if necessary # For demonstration, assuming 'location', 'house_type' are categorical variables df = pd.get_dummies(df, columns=['location', 'house_type'], drop_first=True) from sklearn.model_selection import train_test_split # Separate features and target X = df.drop(columns=['Rent']) y = df['Rent'] # Split into training and testing sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) from sklearn.preprocessing import StandardScaler # Standardize the features scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(X_test) from sklearn.linear_model import LinearRegression # Initialize and train the model model = LinearRegression() model.fit(X_train_scaled, y_train) # Predict on the test set y_pred = model.predict(X_test_scaled) from sklearn.metrics import mean_absolute_error, mean_squared_error import numpy as np # Calculate MAE and RMSE mae = mean_absolute_error(y_test, y_pred) rmse = np.sqrt(mean_squared_error(y_test, y_pred)) print("Mean Absolute Error (MAE):", mae) print("Root Mean Squared Error (RMSE):", rmse)