import pandas as pd # Load the dataset df = pd.read_csv('student_scores.csv') # Display the first few rows and basic information print(df.head()) print(df.describe()) print(df.info()) from sklearn.model_selection import train_test_split # Separate features and target X = df.drop(columns=['Score']) # Assuming 'Score' is the target column y = df['Score'] # Split into training and testing sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) from sklearn.preprocessing import StandardScaler # Initialize and fit the scaler on training data scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(X_test) from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_absolute_error, mean_squared_error import numpy as np # Initialize and train the model model = LinearRegression() model.fit(X_train_scaled, y_train) # Predict on the test set y_pred = model.predict(X_test_scaled) # Evaluate performance mae = mean_absolute_error(y_test, y_pred) rmse = np.sqrt(mean_squared_error(y_test, y_pred)) print("Without Dimensionality Reduction") print("Mean Absolute Error (MAE):", mae) print("Root Mean Squared Error (RMSE):", rmse) from sklearn.decomposition import PCA # Initialize PCA and fit on the scaled training data pca = PCA(n_components=0.95) # Retain 95% variance X_train_pca = pca.fit_transform(X_train_scaled) X_test_pca = pca.transform(X_test_scaled) # Check the number of components print("Number of components selected:", pca.n_components_) # Train the regression model on PCA-reduced data model_pca = LinearRegression() model_pca.fit(X_train_pca, y_train) # Predict on the PCA-transformed test set y_pred_pca = model_pca.predict(X_test_pca) # Evaluate performance mae_pca = mean_absolute_error(y_test, y_pred_pca) rmse_pca = np.sqrt(mean_squared_error(y_test, y_pred_pca)) print("With Dimensionality Reduction (PCA)") print("Mean Absolute Error (MAE):", mae_pca) print("Root Mean Squared Error (RMSE):", rmse_pca) print("Comparison of Model Performance:") print("Without Dimensionality Reduction - MAE:", mae, ", RMSE:", rmse) print("With Dimensionality Reduction (PCA) - MAE:", mae_pca, ", RMSE:", rmse_pca)