from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.naive_bayes import GaussianNB from sklearn.metrics import accuracy_score, confusion_matrix, classification_report iris = datasets.load_iris() x = iris.data y = iris.target X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=42) #Initialize the Naive Bayes model nb_model = GaussianNB() # Fit the model to the training data nb_model.fit(X_train, y_train) #Predict on the test data y_pred = nb_model.predict(X_test) #Evaluate the model accuracy = accuracy_score(y_test, y_pred) confusion = confusion_matrix(y_test, y_pred) classification_rep = classification_report(y_test, y_pred) print(f"Accuracy: {accuracy}") print("Confusion Matrix:") print(confusion) print("Classification Report:") print(classification_rep)