import numpy as np from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score, confusion_matrix, classification_report #step 1 load real time dataset data=load_iris() x= data.data#features y=data.target#labelsA #step 2 split the dataset into training amd testing sets X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=42) #step 3 standardize the features scaler=StandardScaler() X_train=scaler.fit_transform(X_train) X_test=scaler.transform(X_test) #STEP 4 Initialize the KNN classifier and fit to the training data knn= KNeighborsClassifier(n_neighbors=5) knn.fit(X_train,y_train) #step 5 make predictions on the test data y_pred=knn.predict(X_test) #step 6 evaluate the model accuracy,confusion matrix, classification report accuracy=accuracy_score(y_test,y_pred) conf_matrix=confusion_matrix(y_test,y_pred) class_report=classification_report(y_test,y_pred) print(f'Accuracy: {accuracy}') print('Confusion Matrix:') print(conf_matrix) print('Classification Report:') print(class_report)