from sklearn.tree import DecisionTreeClassifier from sklearn.preprocessing import LabelEncoder df = pd.read_csv('/content/iris.csv') df.info() encoder = LabelEncoder() df["variety"] = encoder.fit_transform(df["variety"]) df.info() X = df.iloc[:,:-1] #df.drop(columns=["speices"]) y = df.iloc[:,-1] #df["species"] X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=42) dtc = DecisionTreeClassifier() dtc.fit(X_train,y_train) y_pred = dtc.predict(X_test) print(y_test,y_pred) from sklearn.metrics import accuracy_score,classification_report,confusion_matrix accuracy = accuracy_score(y_pred,y_test) print(accuracy) print(classification_report(y_pred,y_test)) print(confusion_matrix(y_pred,y_test)) # prompt: Visualize insights of Above decision tree classification on iris dataset from sklearn import tree import matplotlib.pyplot as plt plt.figure(figsize=(15,10)) tree.plot_tree(dtc,filled=True,feature_names=X.columns,class_names=['0','1','2']) plt.show()