import pandas as pd from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import accuracy_score, confusion_matrix, classification_report # Sample data data = { 'Feature1': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 'Feature2': [5, 10, 15, 20, 25, 30, 35, 40, 45, 50], 'Target': [0, 0, 0, 0, 1, 1, 1, 1, 1, 1] } df = pd.DataFrame(data) # Split data into features and target X = df[['Feature1', 'Feature2']] y = df['Target'] # Split dataset X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) # Initialize and fit model tree = DecisionTreeClassifier(max_depth=3, random_state=42) tree.fit(X_train, y_train) # Make predictions y_pred = tree.predict(X_test) # Evaluate model accuracy = accuracy_score(y_test, y_pred) conf_matrix = confusion_matrix(y_test, y_pred) class_report = classification_report(y_test, y_pred) print(f'Accuracy: {accuracy:.2f}') print('Confusion Matrix:') print(conf_matrix) print('Classification Report:') print(class_report)