import pandas as ps from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from sklearn.metrics import accuracy_score,confusion_matrix,classification_report,precision_score df=pd.read_csv("loan_data_set.csv") print(df.head()) x=df.iloc[:614] y=df.Loan_Status encoder=LabelEncoder() x_train_enc=x.apply(encoder.fit_transform) x_train,x_test,y_train,y_test=train_test_split(x_train_enc,y,test_size=0.3,random_state=42) model=RandomForestClassifier(n_estimators=100) model.fit(x_train,y_train) y_pred=model.predict(x_test) print(accuracy_score(y_test,y_pred)) print(precision_score(y_test,y_pred,average='weighted',pos_label='Y')) print(confusion_matrix(y_test,y_pred)) print(classification_report(y_test,y_pred))