from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.svm import SVC from sklearn.metrics import accuracy_score,confusion_matrix import matplotlib.pyplot as plt from sklearn.decomposition import PCA # Load the Iris dataset iris = pd.read_csv('/content/iris.csv') X = iris.drop(columns=["Species"]) # Features y = iris["Species"] # Labels # Split the dataset into training and testing sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Train the SVC model with a linear kernel model = SVC(kernel='linear', random_state=42) model.fit(X_train, y_train) # Make predictions y_pred = model.predict(X_test) # Evaluate the model accuracy = accuracy_score(y_test, y_pred) print(f"Model Accuracy: {accuracy:.2f}") conf_matrix = confusion_matrix(y_test, y_pred) print('Confusion Matrix:') print(conf_matrix)