from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.svm import SVC from sklearn.metrics import accuracy_score, confusion_matrix # Step 1: Load the Iris dataset iris = datasets.load_iris() X = iris.data y = iris.target # Step 2: Select only two classes ('setosa' and 'versicolor') X = X[y != 2] # Remove 'virginica' class y = y[y != 2] # Keep only classes 0 and 1 # Step 3: Split the dataset X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) # Step 4: Train the SVC model model = SVC(kernel='linear') model.fit(X_train, y_train) # Step 5: Make predictions and evaluate y_pred = model.predict(X_test) accuracy = accuracy_score(y_test, y_pred) conf_matrix = confusion_matrix(y_test, y_pred) print("Accuracy:", accuracy) print("Confusion Matrix:\n", conf_matrix)