from tensorflow.keras import layers, models, Input # Define input layer explicitly input_layer = Input(shape=(2,)) # Explicit input layer # Instantiate the model. linear_1d_model = tf.keras.Sequential() linear_1d_model.add(input_layer) # Add the normalization layer. linear_1d_model.add(hp_normalizer) # Add the single neuron. linear_1d_model.add(Dense(1, input_shape=(1,))) # Display the model summary. linear_1d_model.summary()