A) Detect faces in Image file (using Python & OpenCV) face_detect.py : ================= import cv2 face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') img = cv2.imread('face.jpg') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale( gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30), flags = cv2.CASCADE_SCALE_IMAGE ) print("Faces shape : ", faces.shape) for (x,y,w,h) in faces: cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2) print("Face count : ", faces.shape[0]) cv2.imshow('img',img) cv2.waitKey(0) cv2.destroyAllWindows() ===================================================================== B) Detect faces using Camera (using Python & OpenCV). face_detect_cam.py : ==================== import cv2 face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') cap = cv2.VideoCapture(0) while True: ret, img = cap.read(); if not ret: break gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale( gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30), flags = cv2.CASCADE_SCALE_IMAGE ) for (x,y,w,h) in faces: cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2) cv2.imshow('Face', img) key = cv2.waitKey(1) if key==27 or key==ord('q'): break; cap.release() cv2.destroyAllWindows()
Preview:
downloadDownload PNG
downloadDownload JPEG
downloadDownload SVG
Tip: You can change the style, width & colours of the snippet with the inspect tool before clicking Download!
Click to optimize width for Twitter