def mlm_loss(y_true, y_pred):
loss=float(0)
a = tf.keras.backend.constant(1, dtype='float32')
for s in range(batch_size): # for each sample in batch
for i in range(L):
for j in range(L):
loss=loss + y_true[s][i]*(a-y_true[s][j])*(a-(y_pred[s][i]-y_pred[s][j])) #two conditions
l= tf.keras.backend.constant(L, dtype='float32')
loss=a/l*loss
return loss
Preview:
downloadDownload PNG
downloadDownload JPEG
downloadDownload SVG
Tip: You can change the style, width & colours of the snippet with the inspect tool before clicking Download!
Click to optimize width for Twitter