# Ensemble of Models
estimator = []
estimator.append(('LR',LogisticRegression(solver ='lbfgs',multi_class ='multinomial',max_iter = 200)))
estimator.append(('SVC', SVC(gamma ='auto', probability = True)))
estimator.append(('DTC', DecisionTreeClassifier()))
# Voting Classifier with hard voting
hard_voting = VotingClassifier(estimators = estimator, voting ='hard')
hard_voting.fit(X_train, y_train)
y_pred = hard_voting.predict(X_test)
# accuracy_score metric to predict Accuracy
score = accuracy_score(y_test, y_pred)
print("Hard Voting Score % d" % score)
# Voting Classifier with soft voting
soft_voting = VotingClassifier(estimators = estimator, voting ='soft')
soft_voting.fit(X_train, y_train)
y_pred = soft_voting.predict(X_test)
# Using accuracy_score
score = accuracy_score(y_test, y_pred)
print("Soft Voting Score % d" % score)
Preview:
downloadDownload PNG
downloadDownload JPEG
downloadDownload SVG
Tip: You can change the style, width & colours of the snippet with the inspect tool before clicking Download!
Click to optimize width for Twitter