from statsmodels.stats.outliers_influence import variance_inflation_factor
# creating dummies for gender
data['Gender'] = data['Gender'].map({'Male':0, 'Female':1})
# the independent variables set
X = data[['Gender', 'Height', 'Weight']]
# VIF dataframe
vif_data = pd.DataFrame()
vif_data["feature"] = X.columns
# calculating VIF for each feature
vif_data["VIF"] = [variance_inflation_factor(X.values, i)
for i in range(len(X.columns))]
print(vif_data)
Preview:
downloadDownload PNG
downloadDownload JPEG
downloadDownload SVG
Tip: You can change the style, width & colours of the snippet with the inspect tool before clicking Download!
Click to optimize width for Twitter