def missing_pct(df):
# Calculate missing value and their percentage for each column
missing_count_percent = df.isnull().sum() * 100 / df.shape[0]
df_missing_count_percent = pd.DataFrame(missing_count_percent).round(2)
df_missing_count_percent = df_missing_count_percent.reset_index().rename(
columns={
'index':'Column',
0:'Missing_Percentage (%)'
}
)
df_missing_value = df.isnull().sum()
df_missing_value = df_missing_value.reset_index().rename(
columns={
'index':'Column',
0:'Missing_value_count'
}
)
# Sort the data frame
#df_missing = df_missing.sort_values('Missing_Percentage (%)', ascending=False)
Final = df_missing_value.merge(df_missing_count_percent, how = 'inner', left_on = 'Column', right_on = 'Column')
Final = Final.sort_values(by = 'Missing_Percentage (%)',ascending = False)
return Final
missing_pct(df)
Preview:
downloadDownload PNG
downloadDownload JPEG
downloadDownload SVG
Tip: You can change the style, width & colours of the snippet with the inspect tool before clicking Download!
Click to optimize width for Twitter