import torch.nn as nn
from torch.nn.utils import spectral_norm
def conv2d(*args, **kwargs):
return spectral_norm(nn.Conv2d(*args, **kwargs))
class SeparableConv2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, bias=False):
super(SeparableConv2d, self).__init__()
self.depthwise = conv2d(in_channels, in_channels, kernel_size=kernel_size,
groups=in_channels, bias=bias, padding=1)
self.pointwise = conv2d(in_channels, out_channels,
kernel_size=1, bias=bias)
def forward(self, x):
out = self.depthwise(x)
out = self.pointwise(out)
return out
Preview:
downloadDownload PNG
downloadDownload JPEG
downloadDownload SVG
Tip: You can change the style, width & colours of the snippet with the inspect tool before clicking Download!
Click to optimize width for Twitter