# Import Libraries
import os
import tensorflow as tf
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
plt.style.use('fivethirtyeight')
def plot_performance(hist):
hist_ = hist.history
epochs = hist.epoch
plt.plot(epochs, hist_['accuracy'], label='Training Accuracy')
plt.plot(epochs, hist_['val_accuracy'], label='Validation Accuracy')
plt.title('Training and validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.figure()
plt.plot(epochs, hist_['loss'], label='Training loss')
plt.plot(epochs, hist_['val_loss'], label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
recall = np.array(hist_['recall'])
precision = np.array(hist_['precision'])
val_recall = np.array(hist_['val_recall'])
val_precision = np.array(hist_['val_precision'])
plt.figure()
plt.plot(epochs,
2*((recall * precision)/(recall + precision)),
label='Training f1')
plt.plot(epochs,
2*((val_recall * val_precision)/(val_recall + val_precision)),
label='Validation f1')
plt.title('Training and validation F1-Score')
plt.xlabel('Epochs')
plt.ylabel('score')
plt.legend()
plt.show()
Preview:
downloadDownload PNG
downloadDownload JPEG
downloadDownload SVG
Tip: You can change the style, width & colours of the snippet with the inspect tool before clicking Download!
Click to optimize width for Twitter