# create a pipeline select_pipe = make_pipeline(StandardScaler(), SelectPercentile(), KNeighborsClassifier()) # create the search grid. # Pipeline hyper-parameters are specified as <step name>__<hyper-parameter name> param_grid = {'kneighborsclassifier__n_neighbors': range(1, 10), 'selectpercentile__percentile': [1, 2, 5, 10, 50, 100]} # Instantiate grid-search grid = GridSearchCV(select_pipe, param_grid, cv=10) # run the grid-search and report results grid.fit(X_train, y_train) print(grid.best_params_) print(grid.score(X_test, y_test))
Preview:
downloadDownload PNG
downloadDownload JPEG
downloadDownload SVG
Tip: You can change the style, width & colours of the snippet with the inspect tool before clicking Download!
Click to optimize width for Twitter