## Dealing w JSON Data from API Requests These code snippets provide a basic framework for handling various scenarios in data engineering tasks involving JSON data and PySpark. The actual implementation may require more specific details based on the context and data. __________________ 1. **Nested JSON Objects**: ```python from pyspark.sql.functions import col # Assuming df is your DataFrame df.select(col("main_column.nested_field1"), col("main_column.nested_field2")).show() ``` 2. **JSON Arrays**: ```python from pyspark.sql.functions import explode # Exploding the array into separate rows df.withColumn("exploded_column", explode(col("array_column"))).show() ``` 3. **Paginated API Responses**: ```python # Assume getPage is a function to fetch a page of data for page_number in range(1, total_pages + 1): page_data = getPage(api_endpoint, page_number) # Process page_data with PySpark ``` 4. **Inconsistent Data Formats**: ```python from pyspark.sql.functions import when # Handling different data formats df.withColumn("unified_column", when(col("column1").isNotNull(), col("column1")) .otherwise(col("column2"))) ``` 5. **Error Handling and Retry Logic**: ```python import time retries = 3 for _ in range(retries): try: response = api_call() # Process response break except Exception as e: time.sleep(5) # Wait before retrying ``` 6. **Dynamic Schema Detection**: ```python from pyspark.sql import SparkSession spark = SparkSession.builder.getOrCreate() df = spark.read.option("inferSchema", "true").json(json_file_path) ``` 7. **Real-time Data Streaming**: ```python df = spark.readStream.format("kafka") .option("kafka.bootstrap.servers", "host1:port1,host2:port2") .option("subscribe", "topic") .load() ``` 8. **Data Transformation and Aggregation**: ```python from pyspark.sql.functions import avg df.groupBy("group_column").agg(avg("value_column")).show() ``` 9. **Time Series Data**: ```python from pyspark.sql.functions import to_timestamp df.withColumn("timestamp", to_timestamp(col("date_string"))) .groupBy("timestamp").mean("value").show() ``` 10. **Integrating with Other Data Sources**: ```python df1 = spark.read.json(json_file_path1) df2 = spark.read.json(json_file_path2) df_joined = df1.join(df2, df1.id == df2.id) ```
Preview:
downloadDownload PNG
downloadDownload JPEG
downloadDownload SVG
Tip: You can change the style, width & colours of the snippet with the inspect tool before clicking Download!
Click to optimize width for Twitter