Preview:
def process_masks_and_save_with_visualization(mask_dir, bump_dir, no_bump_dir, skip=12, threshold=3):
    """
    Przetwarza maski, wykrywa obecność garbu, zapisuje je do odpowiednich folderów 
    i tworzy ich wizualizacje.
    """
    if not os.path.exists(bump_dir):
        os.makedirs(bump_dir)
    if not os.path.exists(no_bump_dir):
        os.makedirs(no_bump_dir)

    for filename in os.listdir(mask_dir):
        file_path = os.path.join(mask_dir, filename)
        if os.path.isfile(file_path) and filename.endswith('.png'):
            mask = Image.open(file_path).convert('L')  # Konwertuj do odcieni szarości
            mask_np = np.array(mask)
       
            # Wykrycie garbu
            bump_present = detect_bump(mask_np, skip, threshold)
            
            # Obliczanie max_diff
            label_bony_roof = 5
            binary_mask = (mask_np == label_bony_roof).astype(np.uint8)
            height, width = binary_mask.shape
            upper_contour = []
 
            for x in range(width):
                column = binary_mask[:, x]
                if np.any(column):
                    y = np.where(column)[0][0]  # Najwyższy piksel w danej kolumnie
                    upper_contour.append(y)
                else:
                    upper_contour.append(height)
 
            upper_contour = np.array(upper_contour)
            min_y = np.min(upper_contour)
            distances = min_y - upper_contour
            differences = pd.Series(distances).diff(periods=skip).fillna(0).abs()
            max_diff = differences.max()
            
            # Wizualizacja maski
            visualized_image = np.zeros((height, width, 3), dtype=np.uint8)
            
            for label, color_info in CLASS_COLORS.items():
                color = color_info['color_rgb']
                visualized_image[mask_np == label] = color
 
            # Zapisanie do odpowiedniego folderu
            if bump_present:
                save_path = os.path.join(bump_dir, filename)
            else:
                save_path = os.path.join(no_bump_dir, filename)
 
            Image.fromarray(visualized_image).save(save_path)
            print(f'Zapisano zwizualizowaną maskę do: {save_path} - max_diff: {max_diff}')
 
 
process_masks_and_save_with_visualization('./Angles/dane/masks_from_txt', './Angles/dane/garb_5_5/garb_obecny','./Angles/dane/garb_5_5/garb_nieobecny')
downloadDownload PNG downloadDownload JPEG downloadDownload SVG

Tip: You can change the style, width & colours of the snippet with the inspect tool before clicking Download!

Click to optimize width for Twitter