import numpy as np import matplotlib.pyplot as plt import seaborn as sns import pandas as pd from sklearn.model_selection import train_test_split from sklearn import metrics from sklearn.linear_model import LinearRegression df = pd.read_csv("Housing.csv") newdf = df[["price", "bedrooms"]] X = newdf.drop(['price'], axis=1) Y = newdf['price'] X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=2) model = LinearRegression() model.fit(X_train, Y_train) Y_predict = model.predict(X_test) score_1 = metrics.r2_score(Y_test, Y_predict) score_2 = metrics.mean_absolute_error(Y_test, Y_predict) score_3 = metrics.mean_squared_error(Y_test, Y_predict) print('Mean Squared Error:', score_3) print('R Squared Error:', score_1) print('Mean Absolute Error:', score_2)
Preview:
downloadDownload PNG
downloadDownload JPEG
downloadDownload SVG
Tip: You can change the style, width & colours of the snippet with the inspect tool before clicking Download!
Click to optimize width for Twitter