Preview:
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
# Sample data
data = {
 'Feature1': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
 'Feature2': [5, 10, 15, 20, 25, 30, 35, 40, 45, 50],
 'Target': [2, 4, 5, 7, 10, 13, 14, 16, 18, 20]
}
df = pd.DataFrame(data)
# Split data into features and target
X = df[['Feature1', 'Feature2']]
y = df['Target']
# Split dataset
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# Initialize and fit model
linreg = LinearRegression()
linreg.fit(X_train, y_train)
# Make predictions
y_pred = linreg.predict(X_test)
# Evaluate model
mse = mean_squared_error(y_test, y_pred)
mae = mean_absolute_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print(f'Mean Squared Error: {mse:.2f}')
print(f'Mean Absolute Error: {mae:.2f}')
print(f'R-squared Score: {r2:.2f}')
downloadDownload PNG downloadDownload JPEG downloadDownload SVG

Tip: You can change the style, width & colours of the snippet with the inspect tool before clicking Download!

Click to optimize width for Twitter