#Logistic Regression # Import necessary libraries from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, confusion_matrix, classification_report from sklearn.datasets import load_iris # Load sample data data = load_iris() X = data.data y = (data.target == 2).astype(int) # Create a binary target for the logistic regression example # Split data into training and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0) # Create and train the logistic regression model model = LogisticRegression() model.fit(X_train, y_train) # Make predictions y_pred = model.predict(X_test) # Evaluate the model accuracy = accuracy_score(y_test, y_pred) conf_matrix = confusion_matrix(y_test, y_pred) class_report = classification_report(y_test, y_pred) print("Accuracy:", accuracy) print("Confusion Matrix:\n", conf_matrix) print("Classification Report:\n", class_report)
Preview:
downloadDownload PNG
downloadDownload JPEG
downloadDownload SVG
Tip: You can change the style, width & colours of the snippet with the inspect tool before clicking Download!
Click to optimize width for Twitter