#Linear Regression from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.datasets import make_classification from sklearn.metrics import confusion_matrix, accuracy_score, classification_report import numpy as np import matplotlib.pyplot as plt import seaborn as sns X, y = make_classification(n_samples = 1000, n_features = 2, n_redundant =0, n_informative = 2, n_classes = 2, random_state = 42) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 42) linear_model = LinearRegression() linear_model.fit(X_train, y_train) y_pred_prob = linear_model.predict(X_test) y_pred = (y_pred_prob >=0.5).astype(int) cm = confusion_matrix(y_test, y_pred) plt.figure(figsize = (6, 4)) sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', cbar=False)
Preview:
downloadDownload PNG
downloadDownload JPEG
downloadDownload SVG
Tip: You can change the style, width & colours of the snippet with the inspect tool before clicking Download!
Click to optimize width for Twitter