#Naive Bayes from sklearn.model_selection import train_test_split from sklearn.naive_bayes import GaussianNB from sklearn.datasets import load_iris from sklearn.metrics import accuracy_score, confusion_matrix, classification_report data = load_iris() X = data.data y = (data.target == 2).astype(int) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 0) model = GaussianNB() model.fit(X_train, y_train) y_pred = model.predict(X_test) accuracy = accuracy_score(y_test, y_pred) conf = confusion_matrix(y_test, y_pred) classR = classification_report(y_test, y_pred) print(accuracy) print(conf) print(classR)
Preview:
downloadDownload PNG
downloadDownload JPEG
downloadDownload SVG
Tip: You can change the style, width & colours of the snippet with the inspect tool before clicking Download!
Click to optimize width for Twitter