import pandas as pd from sklearn.datasets import load_iris from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import classification_report,confusion_matrix,accuracy_score from sklearn.model_selection import train_test_split iris=load_iris() df=pd.DataFrame(iris.data,columns=iris.feature_names) print(df.head()) df['Species']=iris.target x=df.drop('Species',axis=1) y=df['Species'] x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=42) model=KNeighborsClassifier(n_neighbors=3) model.fit(x_train,y_train) y_pred=model.predict(x_test) print(accuracy_score(y_test,y_pred)) print(confusion_matrix(y_test,y_pred)) print(classification_report(y_test,y_pred))
Preview:
downloadDownload PNG
downloadDownload JPEG
downloadDownload SVG
Tip: You can change the style, width & colours of the snippet with the inspect tool before clicking Download!
Click to optimize width for Twitter