import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score data = pd.read_csv('Pune_rent.csv') print(data.head()) print(data.info()) X = data.drop(columns=['rent']) y = data['rent'] X = pd.get_dummies(X, drop_first=True) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model = LinearRegression() model.fit(X_train, y_train) y_pred = model.predict(X_test) mae = mean_absolute_error(y_test, y_pred) rmse = mean_squared_error(y_test, y_pred, squared=False) r2 = r2_score(y_test, y_pred) print("Model Performance:") print(f"Mean Absolute Error (MAE): {mae:.2f}") print(f"Root Mean Squared Error (RMSE): {rmse:.2f}") print(f"R² Score: {r2:.2f}")
Preview:
downloadDownload PNG
downloadDownload JPEG
downloadDownload SVG
Tip: You can change the style, width & colours of the snippet with the inspect tool before clicking Download!
Click to optimize width for Twitter