import tensorflow as tf # 定义模型输入 images = tf.keras.Input(shape=(224, 224, 3)) # 使用卷积神经网络提取图像特征 x = tf.keras.layers.Conv2D(32, (3, 3), activation='relu')(images) x = tf.keras.layers.MaxPooling2D((2, 2))(x) x = tf.keras.layers.Conv2D(64, (3, 3), activation='relu')(x) x = tf.keras.layers.MaxPooling2D((2, 2))(x) x = tf.keras.layers.Flatten()(x) # 使用循环神经网络分析驾驶员的行为序列 x = tf.keras.layers.LSTM(128)(x) # 输出驾驶员的行为类别 outputs = tf.keras.layers.Dense(5, activation='softmax')(x) # 创建模型 model = tf.keras.Model(inputs=images, outputs=outputs) # 编译模型 model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # 训练模型 model.fit(train_data, train_labels, epochs=10) # 测试模型 model.evaluate(test_data, test_labels)
Preview:
downloadDownload PNG
downloadDownload JPEG
downloadDownload SVG
Tip: You can change the style, width & colours of the snippet with the inspect tool before clicking Download!
Click to optimize width for Twitter