import pandas as pd import seaborn as sns import matplotlib.pyplot as plt # Creating a DataFrame with Name, Age, and City data = { "Name": ["Alice", "Bob", "Charlie", "David", "Eve"], "Age": [25, 30, 35, 40, 28], "City": ["New York", "Los Angeles", "Chicago", "Houston", "Phoenix"], } df = pd.DataFrame(data) # Display the DataFrame print("DataFrame:") print(df) # 1.1 Box Plot for Age plt.figure(figsize=(8, 6)) sns.boxplot(x=df["Age"], color="skyblue") plt.title("Box Plot of Age", fontsize=14) plt.xlabel("Age", fontsize=12) plt.show() # Example Data for Heatmap sales = [12000, 15000, 17000, 13000, 16000, 19000] profit = [3000, 5000, 7000, 4000, 6000, 8000] products_sold = [200, 250, 300, 220, 280, 310] # Creating a DataFrame for the heatmap heatmap_data = { "Sales": sales, "Profit": profit, "Products Sold": products_sold, } df_heatmap = pd.DataFrame(heatmap_data) # 1.2 Heatmap of Correlations plt.figure(figsize=(8, 6)) correlation_matrix = df_heatmap.corr() sns.heatmap(correlation_matrix, annot=True) plt.title("Heatmap of Correlations", fontsize=14) plt.show()
Preview:
downloadDownload PNG
downloadDownload JPEG
downloadDownload SVG
Tip: You can change the style, width & colours of the snippet with the inspect tool before clicking Download!
Click to optimize width for Twitter