# Import required libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.cluster import KMeans # Given Data data = { 'Feature1': [10, 20, 30, 40, 50], 'Feature2': [100, 200, 300, 400, 500] } # Step 1: Create a DataFrame df = pd.DataFrame(data) # Step 1.1: Apply Standard Scaler scaler_standard = StandardScaler() df_standard = scaler_standard.fit_transform(df) # Step 1.2: Apply Min-Max Scaler scaler_minmax = MinMaxScaler() df_minmax = scaler_minmax.fit_transform(df) # Step 2: Apply KMeans Clustering (2 clusters for demonstration) kmeans = KMeans(n_clusters=2, random_state=42) # Fitting KMeans on both scaled datasets kmeans_standard = kmeans.fit_predict(df_standard) kmeans_minmax = kmeans.fit_predict(df_minmax) # Step 3: Pie Chart Visualization for KMeans (using standard scaled data as an example) # Count the occurrences of each cluster labels_standard = pd.Series(kmeans_standard).value_counts() # Plot the pie chart plt.figure(figsize=(6, 6)) plt.pie(labels_standard, labels=[f"Cluster {i}" for i in labels_standard.index], autopct='%1.1f%%', startangle=90) plt.title('Pie Chart of KMeans Clusters (Standard Scaled Data)') plt.show()
Preview:
downloadDownload PNG
downloadDownload JPEG
downloadDownload SVG
Tip: You can change the style, width & colours of the snippet with the inspect tool before clicking Download!
Click to optimize width for Twitter