import numpy as np import pandas as pd from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import accuracy_score, confusion_matrix, classification_report iris = datasets.load_iris() X = iris.data y = iris.target Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size=0.3, random_state=42) model = DecisionTreeClassifier() model.fit(Xtrain, ytrain) predictions = model.predict(Xtest) accuracy = accuracy_score(y_test, predictions) confusion = confusion_matrix(y_test, predictions) report = classification_report(y_test, predictions) print("Decision Tree Performance Metrics:") print("Accuracy:", accuracy) print("Confusion Matrix:\n", confusion) print("Classification Report:\n", report)
Preview:
downloadDownload PNG
downloadDownload JPEG
downloadDownload SVG
Tip: You can change the style, width & colours of the snippet with the inspect tool before clicking Download!
Click to optimize width for Twitter