week-8: # Import necessary libraries from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, classification_report # Load a sample dataset (Iris) data = load_iris() X = data.data # Features y = data.target # Labels # For binary classification, select only two classes (e.g., class 0 and 1) X = X[y != 2] y = y[y != 2] # Split into training and testing data X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Initialize the Logistic Regression model model = LogisticRegression() # Train the model model.fit(X_train, y_train) # Predict on the test data y_pred = model.predict(X_test) # Evaluate the model print("Accuracy:", accuracy_score(y_test, y_pred)) print("Classification Report:\n", classification_report(y_test, y_pred)) output: Accuracy: 1.0 Classification Report: precision recall f1-score support 0 1.00 1.00 1.00 12 1 1.00 1.00 1.00 8 accuracy 1.00 20 macro avg 1.00 1.00 1.00 20 weighted avg 1.00 1.00 1.00 20
Preview:
downloadDownload PNG
downloadDownload JPEG
downloadDownload SVG
Tip: You can change the style, width & colours of the snippet with the inspect tool before clicking Download!
Click to optimize width for Twitter