-- RISK002 DROP TABLE team_kingkong.tpap_risk002_breaches; -- CREATE TABLE team_kingkong.tpap_risk002_breaches AS INSERT INTO team_kingkong.tpap_risk002_breaches with tpap_base as (SELECT DISTINCT B.*, C.category, C.txn_type , IF(D.upi_subtype IS NOT NULL, D.upi_subtype, IF(C.category = 'LITE_MANDATE', 'UPI_LITE_MANDATE', '')) AS upi_subtype , D.payer_ifsc, D.payer_account_num FROM (SELECT txn_id, MAX(CASE WHEN participant_type = 'PAYER' THEN vpa END) AS payer_vpa, MAX(CASE WHEN participant_type = 'PAYEE' THEN vpa END) AS payee_vpa, -- MAX(CASE WHEN participant_type = 'PAYER' THEN masked_account_number END) AS sender_masked_account_number, MAX(DATE(created_on)) as txn_date, MAX(amount) AS txn_amount, MAX(created_on) AS txn_time FROM switch.txn_participants_snapshot_v3 WHERE DATE(dl_last_updated) BETWEEN DATE(DATE'2025-06-01' - INTERVAL '1' DAY) AND DATE'2025-06-30' AND DATE(created_on) BETWEEN DATE(DATE'2025-06-01' - INTERVAL '1' DAY) AND DATE'2025-06-30' GROUP BY 1)B inner join (select txn_id, category, "type" AS txn_type from switch.txn_info_snapshot_v3 where DATE(dl_last_updated) BETWEEN DATE(DATE'2025-06-01' - INTERVAL '1' DAY) AND DATE'2025-06-30' and DATE(created_on) BETWEEN DATE(DATE'2025-06-01' - INTERVAL '1' DAY) AND DATE'2025-06-30' and upper(status) = 'SUCCESS' AND "type" <> 'CREDIT') C on B.txn_id = C.txn_id INNER JOIN (SELECT txnid , regexp_replace(cast(json_extract(request, '$.evaluationType') as varchar), '"', '') AS upi_subtype , json_extract_scalar(request, '$.requestPayload.payerIfsc') AS payer_ifsc , json_extract_scalar(request, '$.requestPayload.payerAccountNum') AS payer_account_num FROM tpap_hss.upi_switchv2_dwh_risk_data_snapshot_v3 WHERE DATE(dl_last_updated) BETWEEN DATE(DATE'2025-06-01' - INTERVAL '1' DAY) AND DATE'2025-06-30' AND (lower(regexp_replace(cast(json_extract(request, '$.requestPayload.payerVpa') as varchar), '"', '')) LIKE '%@paytm%' or lower(regexp_replace(cast(json_extract(request, '$.requestPayload.payerVpa') as varchar), '"', '')) like '%@pt%') AND json_extract_scalar(response, '$.action_recommended') <> 'BLOCK' AND regexp_replace(cast(json_extract(request, '$.requestPayload.payerType') AS varchar),'"','') = 'PERSON' AND regexp_replace(cast(json_extract(request, '$.requestPayload.payeeType') AS varchar),'"','') = 'PERSON' AND regexp_replace(cast(json_extract(request, '$.evaluationType') as varchar), '"', '') = 'UPI_TRANSACTION')D ON B.txn_id = D.txnid WHERE (payer_vpa LIKE '%@paytm%') OR (payer_vpa LIKE '%@pt%') AND payee_vpa LIKE '%@%') SELECT * FROM (SELECT t1.payer_vpa, t1.payee_vpa, t1.txn_id, t1.txn_amount, t1.category, t1.upi_subtype, t1.payer_account_num, t1.payer_ifsc, t1.txn_time, t1.txn_date, SUM(t2.txn_amount) AS amt_24hr, 100000 AS threshold_24hr FROM tpap_base t1 INNER JOIN tpap_base t2 ON t1.payer_account_num = t2.payer_account_num AND t1.payer_ifsc = t2.payer_ifsc AND t2.txn_time BETWEEN (t1.txn_time - INTERVAL '86400' SECOND) AND t1.txn_time -- 24 hr AND t1.txn_id <> t2.txn_id AND t1.txn_date BETWEEN DATE'2025-06-01' AND DATE'2025-06-30' GROUP BY t1.payer_vpa, t1.payee_vpa, t1.txn_id, t1.txn_amount, t1.category, t1.upi_subtype, t1.payer_account_num, t1.payer_ifsc, t1.txn_time, t1.txn_date ) WHERE (txn_amount + amt_24hr) > threshold_24hr;
Preview:
downloadDownload PNG
downloadDownload JPEG
downloadDownload SVG
Tip: You can change the style, width & colours of the snippet with the inspect tool before clicking Download!
Click to optimize width for Twitter