ROC_AUC -> roc_auc_single(test_g, model_**)
Wed Aug 03 2022 12:00:06 GMT+0000 (Coordinated Universal Time)
Saved by
@mnis00014
def roc_auc_single(df, model):
import sklearn.metrics as metrics
num_label = {'ok': 1, 'nok' : 0}
Y_test = df_test['class'].copy().map(num_label).astype('int')
df.reset()
predictions = model.predict(df, steps=len(df), verbose=0)
pred_labels= np.where(predictions>0.5, 1, 0)
roc_auc = metrics.roc_auc_score(Y_test, predictions)
print('ROC_AUC: ', roc_auc)
fpr, tpr, thresholds = metrics.roc_curve(Y_test, predictions)
plt.plot(fpr, tpr, label = 'ROC_AUC = %0.3f' % roc_auc)
plt.xlabel("False Positive Rate", fontsize= 12)
plt.ylabel("True Positive Rate", fontsize= 12)
plt.legend(loc="lower right")
fig1 = plt.gcf()
plt.show()
plt.draw()
fig1.savefig('roc_auc_single.png', dpi=50)
content_copyCOPY
Comments