knn
Wed Nov 06 2024 17:11:48 GMT+0000 (Coordinated Universal Time)
Saved by
@signin
import numpy as np
import pandas as pd
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
data = datasets.load_iris()
x = data.data
y = data.target
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)
scaler = StandardScaler()
x_train = scaler.fit_transform(x_train)
x_test = scaler.transform(x_test)
knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(x_train, y_train)
y_pred = knn.predict(x_test)
accuracy = accuracy_score(y_test, y_pred)
confusion = confusion_matrix(y_test, y_pred)
classification_rep = classification_report(y_test, y_pred)
print(f"Accuracy: {accuracy * 100 : .2f}%")
print("Confusion Matrix:\n", confusion)
print("Classification Report:\n", classification_rep)
content_copyCOPY
Comments