深度学习:驾驶行为分析-CSDN博客
Sat Nov 16 2024 07:13:37 GMT+0000 (Coordinated Universal Time)
Saved by
@Tez
import tensorflow as tf
# 定义模型输入
images = tf.keras.Input(shape=(224, 224, 3))
# 使用卷积神经网络提取图像特征
x = tf.keras.layers.Conv2D(32, (3, 3), activation='relu')(images)
x = tf.keras.layers.MaxPooling2D((2, 2))(x)
x = tf.keras.layers.Conv2D(64, (3, 3), activation='relu')(x)
x = tf.keras.layers.MaxPooling2D((2, 2))(x)
x = tf.keras.layers.Flatten()(x)
# 使用循环神经网络分析驾驶员的行为序列
x = tf.keras.layers.LSTM(128)(x)
# 输出驾驶员的行为类别
outputs = tf.keras.layers.Dense(5, activation='softmax')(x)
# 创建模型
model = tf.keras.Model(inputs=images, outputs=outputs)
# 编译模型
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# 训练模型
model.fit(train_data, train_labels, epochs=10)
# 测试模型
model.evaluate(test_data, test_labels)
content_copyCOPY
https://blog.csdn.net/feng1790291543/article/details/137729551
Comments