OBST (NEW)
Mon Nov 18 2024 13:55:27 GMT+0000 (Coordinated Universal Time)
Saved by @login123
import java.util.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); System.out.println("Enter the number of keys (n):"); int n = sc.nextInt(); double[] p = new double[n+1]; double[] q = new double[n+1]; System.out.println("Enter probabilities of successful searches for keys (p):"); for(int i=1;i<=n;i++){ p[i] = sc.nextDouble(); } System.out.println("Enter probabilities of unsuccessful searches (q):"); for(int i=0;i<=n;i++){ q[i] = sc.nextDouble(); } obst(p,q,n); } public static void obst(double[] p,double[] q,int n){ double[][] w = new double[n+1][n+1]; double[][] c = new double[n+1][n+1]; int[][] r = new int[n+1][n+1]; for(int i=0;i<=n;i++){ w[i][i] = q[i]; c[i][i] = 0; r[i][i] = 0; } for(int m = 1;m<=n;m++){ for(int i=0;i<=n-m;i++){ int j = i+m; w[i][j] = w[i][j-1] + p[j]+q[j]; double mincost = Double.MAX_VALUE; int root = -1; for(int k=i+1;k<=j;k++){ double cost = c[i][k-1]+c[k][j]+w[i][j]; if(cost < mincost){ mincost = cost; root = k; } } c[i][j] = mincost; r[i][j] = root; } } System.out.println("Cost = "+c[0][n]); System.out.println("Weight = "+w[0][n]); } } ALGORITHM: // Algorithm OBST(p, q, n) // Given n distinct identifiers a1 < a2 < ... < an and probabilities // p[i], 1 ≤ i ≤ n, and q[i], 0 ≤ i ≤ n, this algorithm computes // the cost c[i, j] of optimal binary search trees tij for identifiers // a[i+1],...,a[j]. It also computes r[i, j], the root of tij. // w[i, j] is the weight of tij. for i := 0 to n - 1 do { // Initialize. w[i, i] := q[i]; r[i, i] := 0; c[i, i] := 0.0; // Optimal trees with one node w[i, i + 1] := q[i] + q[i + 1] + p[i + 1]; r[i, i + 1] := i + 1; c[i, i + 1] := q[i] + q[i + 1] + p[i + 1]; } w[n, n] := q[n]; r[n, n] := 0; c[n, n] := 0.0; for m := 2 to n do // Find optimal trees with m nodes. for i := 0 to n - m do { j := i + m; w[i, j] := w[i, j - 1] + p[j] + q[j]; // Solve 5.12 using Knuth's result. k := Find(c, r, i, j); // A value of l in the range r[i, j - 1] ≤ l ≤ r[i + 1, j] that minimizes c[i, l - 1] + c[l, j]; c[i, j] := w[i, j] + c[i, k - 1] + c[k, j]; r[i, j] := k; } write (c[0, n], w[0, n], r[0, n]); // Algorithm Find(c, r, i, j) min := ∞; for m := r[i, j - 1] to r[i + 1, j] do if (c[i, m - 1] + c[m, j]) < min then { min := c[i, m - 1] + c[m, j]; l := m; } return l;
Comments