# Import necessary libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
# Sample Dataset (replace this with your actual dataset)
# Let's assume we have a dataset with features: 'height', 'weight', and 'experience'
data = {
'height': [150, 160, 170, 180, 190],
'weight': [50, 60, 70, 80, 90],
'experience': [2, 3, 4, 5, 6],
'age': [25, 28, 30, 35, 40] # This is the target variable
}
# Create a DataFrame
df = pd.DataFrame(data)
# Step 2: Data Preprocessing
# Define features (X) and target (y)
X = df[['height', 'weight', 'experience']] # Independent variables
y = df['age'] # Dependent variable (age)
# Step 3: Train-Test Split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# Step 4: Train the Regression Model (Linear Regression)
model = LinearRegression()
model.fit(X_train, y_train)
# Step 5: Make Predictions
y_pred = model.predict(X_test)
# Step 6: Model Evaluation
# Calculate Mean Squared Error (MSE)
mse = mean_squared_error(y_test, y_pred)
print(f"Mean Squared Error: {mse}")
# Calculate R-squared (R²) value
r2 = r2_score(y_test, y_pred)
print(f"R-squared value: {r2}")
Comments