TPAP : RISK_235
Mon Jun 09 2025 09:40:25 GMT+0000 (Coordinated Universal Time)
Saved by @shubhangi.b
-- RISK235 -- if in previous 30 minutes distinct( lat,long)>=10 then block (Paytm specific) -- CREATE TABLE team_kingkong.tpap_risk235_breaches AS INSERT INTO team_kingkong.tpap_risk235_breaches with tpap_base as ( SELECT DISTINCT B.*, C.category , IF(D.upi_subtype IS NOT NULL, D.upi_subtype, IF(C.category = 'LITE_MANDATE', 'UPI_LITE_MANDATE', '')) AS upi_subtype , D.latitude, D.longitude FROM (SELECT txn_id, scope_cust_id, MAX(CASE WHEN participant_type = 'PAYER' THEN vpa END) AS payer_vpa, MAX(CASE WHEN participant_type = 'PAYEE' THEN vpa END) AS payee_vpa, MAX(created_on) as txn_date, MAX(amount) AS txn_amount, created_on AS txn_time FROM switch.txn_participants_snapshot_v3 WHERE DATE(dl_last_updated) BETWEEN DATE(DATE'2025-03-01' - INTERVAL '1' DAY) AND DATE'2025-03-31' AND DATE(created_on) BETWEEN DATE(DATE'2025-03-01' - INTERVAL '1' DAY) AND DATE'2025-03-31' AND vpa IS NOT NULL GROUP BY 1,2,7)B inner join (select txn_id, category from switch.txn_info_snapshot_v3 where DATE(dl_last_updated) BETWEEN DATE(DATE'2025-03-01' - INTERVAL '1' DAY) AND DATE'2025-03-31' and DATE(created_on) BETWEEN DATE(DATE'2025-03-01' - INTERVAL '1' DAY) AND DATE'2025-03-31' and upper(status) in ('SUCCESS')) C on B.txn_id = C.txn_id INNER JOIN (SELECT txnid , regexp_replace(cast(json_extract(request, '$.evaluationType') as varchar), '"', '') AS upi_subtype , regexp_replace(cast(json_extract(request, '$.requestPayload.latitude') as varchar), '"', '') as latitude , regexp_replace(cast(json_extract(request, '$.requestPayload.longitude') as varchar), '"', '') as longitude FROM tpap_hss.upi_switchv2_dwh_risk_data_snapshot_v3 WHERE DATE(dl_last_updated) BETWEEN DATE(DATE'2025-03-01' - INTERVAL '1' DAY) AND DATE'2025-03-31' AND (lower(regexp_replace(cast(json_extract(request, '$.requestPayload.payerVpa') as varchar), '"', '')) LIKE '%@paytm%' or lower(regexp_replace(cast(json_extract(request, '$.requestPayload.payerVpa') as varchar), '"', '')) like '%@pt%') AND json_extract_scalar(response, '$.action_recommended') <> 'BLOCK' AND regexp_replace(cast(json_extract(request, '$.requestPayload.payerType') AS varchar),'"','') = 'PERSON' AND regexp_replace(cast(json_extract(request, '$.requestPayload.payeeType') AS varchar),'"','') = 'PERSON')D ON B.txn_id = D.txnid WHERE (payer_vpa LIKE '%@paytm%') OR (payer_vpa LIKE '%@pt%') AND payee_vpa LIKE '%@%' ) SELECT * FROM (SELECT t1.payer_vpa, t1.payee_vpa, t1.txn_id, t1.txn_amount, t1.category, t1.upi_subtype, t1.txn_time, t1.latitude, t1.longitude, DATE(t1.txn_time) AS txn_date, COUNT(DISTINCT CONCAT(t2.latitude, '_', t2.longitude)) AS distinct_lat_lon_count, 10 AS lat_long_cnt_threshold FROM tpap_base t1 INNER JOIN tpap_base t2 ON t1.payee_vpa = t2.payee_vpa AND t2.txn_time BETWEEN (t1.txn_time - INTERVAL '1800' SECOND) AND t1.txn_time -- 30 MIN AND t1.txn_id <> t2.txn_id AND t1.txn_amount > 5000 AND NOT (t1.latitude = t2.latitude AND t1.longitude = t2.longitude) GROUP BY t1.payer_vpa, t1.payee_vpa, t1.txn_id, t1.txn_amount, t1.category, t1.upi_subtype, t1.txn_time, DATE(t1.txn_time), t1.latitude, t1.longitude) WHERE distinct_lat_lon_count >= lat_long_cnt_threshold ;
Comments