common returned json data from py req
Tue Nov 28 2023 21:08:49 GMT+0000 (Coordinated Universal Time)
Saved by @knguyencookie
## Dealing w JSON Data from API Requests
These code snippets provide a basic framework for handling various scenarios in data engineering tasks involving JSON data and PySpark. The actual implementation may require more specific details based on the context and data.
__________________
1. **Nested JSON Objects**:
```python
from pyspark.sql.functions import col
# Assuming df is your DataFrame
df.select(col("main_column.nested_field1"), col("main_column.nested_field2")).show()
```
2. **JSON Arrays**:
```python
from pyspark.sql.functions import explode
# Exploding the array into separate rows
df.withColumn("exploded_column", explode(col("array_column"))).show()
```
3. **Paginated API Responses**:
```python
# Assume getPage is a function to fetch a page of data
for page_number in range(1, total_pages + 1):
page_data = getPage(api_endpoint, page_number)
# Process page_data with PySpark
```
4. **Inconsistent Data Formats**:
```python
from pyspark.sql.functions import when
# Handling different data formats
df.withColumn("unified_column",
when(col("column1").isNotNull(), col("column1"))
.otherwise(col("column2")))
```
5. **Error Handling and Retry Logic**:
```python
import time
retries = 3
for _ in range(retries):
try:
response = api_call()
# Process response
break
except Exception as e:
time.sleep(5) # Wait before retrying
```
6. **Dynamic Schema Detection**:
```python
from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()
df = spark.read.option("inferSchema", "true").json(json_file_path)
```
7. **Real-time Data Streaming**:
```python
df = spark.readStream.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.option("subscribe", "topic")
.load()
```
8. **Data Transformation and Aggregation**:
```python
from pyspark.sql.functions import avg
df.groupBy("group_column").agg(avg("value_column")).show()
```
9. **Time Series Data**:
```python
from pyspark.sql.functions import to_timestamp
df.withColumn("timestamp", to_timestamp(col("date_string")))
.groupBy("timestamp").mean("value").show()
```
10. **Integrating with Other Data Sources**:
```python
df1 = spark.read.json(json_file_path1)
df2 = spark.read.json(json_file_path2)
df_joined = df1.join(df2, df1.id == df2.id)
```



Comments