Label Smoothing

PHOTO EMBED

Mon May 16 2022 22:45:07 GMT+0000 (UTC)

Saved by @mridulav #python #pytorch

class LabelSmoothingLoss(torch.nn.Module):
    def __init__(self, smoothing: float = 0.1, 
                 reduction="mean", weight=None):
        super(LabelSmoothingLoss, self).__init__()
        self.smoothing   = smoothing
        self.reduction = reduction
        self.weight    = weight

    def reduce_loss(self, loss):
        return loss.mean() if self.reduction == 'mean' else loss.sum() \
         if self.reduction == 'sum' else loss

    def linear_combination(self, x, y):
        return self.smoothing * x + (1 - self.smoothing) * y

    def forward(self, preds, target):
        assert 0 <= self.smoothing < 1

        if self.weight is not None:
            self.weight = self.weight.to(preds.device)

        n = preds.size(-1)
        log_preds = F.log_softmax(preds, dim=-1)
        loss = self.reduce_loss(-log_preds.sum(dim=-1))
        nll = F.nll_loss(
            log_preds, target, reduction=self.reduction, weight=self.weight
        )
        return self.linear_combination(loss / n, nll)
content_copyCOPY